Pseudomonas putida: An Environment Friendly Bacterium 139

Deng, W., D. Lin, K. Yao, H. Yuan, Z. Wang, J. Li, L. Zou, X. Han, K. Zhou, L. He and X. Hu. 2015. Characterization

of a novel β-cypermethrin-degrading Aspergillus niger YAT strain and the biochemical degradation pathway

of β-cypermethrin. Appl. Microbiol. Biotechnol. 99(19): 8187–8198.

Dunn, N. W. and I. C. Gunsalus. 1973. Transmissible plasmid coding early enzymes of naphthalene oxidation in

Pseudomonas putida. J. Bacteriol. 114(3): 974–979.

Dvořák, P. and V. de Lorenzo. 2018. Refactoring the upper sugar metabolism of Pseudomonas putida for co-utilization

of cellobiose, xylose, and glucose. Metab. Eng. 48: 94–108.

Dvorak, P., S. Bidmanova, J. Damborsky and Z. Prokop. 2014. Immobilized synthetic pathway for biodegradation of

toxic recalcitrant pollutant 1,2,3-Trichloropropane. Environ. Sci. Technol. 48(12): 6859–6866.

Eaton, R. W. and J. S. Karns. 1991. Cloning and comparison of the DNA encoding ammelide aminohydrolase and

cyanuric acid amidohydrolase from three s-triazine-degrading bacterial strains. J. Bacteriol. 173(3): 1363–

1366.

Ebert, B. E., F. Kurth, M. Grund, L. M. Blank and A. Schmid. 2011. Response of Pseudomonas putida KT2440 to

increased NADH and ATP demand. Appl. Environ. Microbiol. 77(18): 6597–6605.

El-sayed, G. M., N. A. Abosereih, S. A. Ibrahim, A. El-Razik, B. Ashraf, M. A. Hammad and F. M. Hafez. 2019.

Cloning of the Organophosphorus Hydrolase (oph) gene and enhancement of Chlorpyrifos degradation in the

Achromobacter xylosoxidans Strain GH9OP via Mutation Induction. Jordan J. Biol. Sci. 12(3).

Ewering, C., F. Heuser, J. K. Benölken, C. O. Brämer and A. Steinbüchel. 2006. Metabolic engineering of strains of

Ralstonia eutropha and Pseudomonas putida for biotechnological production of 2-methylcitric acid. Metab.

Eng. 8(6): 587–602.

Ezeji, T., N. Qureshi and H. P. Blaschek. 2007. Butanol production from agricultural residues: impact of degradation

products on Clostridium beijerinckii growth and butanol fermentation. Biotechnol. Bioeng. 97(6): 1460–1469.

Gahlawat, G. and S. K. Soni. 2017. Valorization of waste glycerol for the production of poly (3-hydroxybutyrate)

and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer by Cupriavidus necator and extraction in a

sustainable manner. Bioresour. Technol. 243: 492–501.

Garcia, R., D. Pistorius, M. Stadler and R. Müller. 2011. Fatty acid-related phylogeny of myxobacteria as an approach

to discover polyunsaturated omega-3/6 fatty acids. J. Bacteriol. 193(8): 1930–1942.

García-Hidalgo, J., D. P. Brink, K. Ravi, C. J. Paul, G. Lidénb and M. F. Gorwa-Grauslund. 2020. Vanillin production

in Pseudomonas: whole-genome sequencing of Pseudomonas sp. strain 9.1 and reannotation of Pseudomonas

putida CalA as a vanillin reductase. Appl. Environ. Microbiol. 86: e02442–19.

Gemperlein, K., G. Zipf, H. S. Bernauer, R. Müller and S. C. Wenzel. 2016. Metabolic engineering of Pseudomonas

putida for production of docosahexaenoic acid based on a myxobacterial PUFA synthase. Metab. Eng.

33: 98–108.

Gemperlein, K., S. Rachid, R. O. Garcia, S. C. Wenzel and R. Müller. 2014. Polyunsaturated fatty acid biosynthesis in

myxobacteria: different PUFA synthases and their product diversity. Chem. Sci. 5(5): 1733–1741.

Giacomazzi, S. and N. Cochet. 2004. Environmental impact of diuron transformation: a review. Chemosphere.

56(11): 1021–1032.

Gibson, D. T., G. E. Cardini, F. C. Maseles and R. E. Kallio. 1970. Oxidative degradation of aromatic hydrocarbons

by microorganisms. Biochem. 9(7): 1631–1635.

Gibson, D. T., V. Mahadevan and J. F. Davey. 1974. Bacterial metabolism of para-and meta-xylene: oxidation of the

aromatic ring. J. Bacteriol. 119(3): 930–936.

Gong, J., H. Zheng, Z. Wu, T. Chen and X. Zhao. 2009. Genome shuffling: progress and applications for phenotype

improvement. Biotechnol. Adv. 27(6): 996–1005.

Gong, T., R. Liu, Y. Che, X. Xu, F. Zhao, H. Yu, C. Song, Y. Liu and C. Yang. 2016. Engineering Pseudomonas putida

KT 2440 for simultaneous degradation of carbofuran and chlorpyrifos. Microb. Biotechnol. 9(6): 792–800.

Gong, T., X. Xu, Y. Che, R. Liu, W. Gao, F. Zhao, H. Yu, J. Liang, P. Xu, C. Song and C. Yang. 2017. Combinatorial

metabolic engineering of Pseudomonas putida KT2440 for efficient mineralization of 1,2,3-trichloropropane.

Sci. Rep. 7(1): 44896.

Gong, T., X. Xu, Y. Dang, A. Kong, Y. Wu, P. Liang, S. Wang, H. Yu, P. Xu and C. Yang. 2018. An engineered

Pseudomonas putida can simultaneously degrade organophosphates. Sci. Total Environ. 628: 1258–1265.

Gosset, G. 2009. Production of aromatic compounds in bacteria. Curr. Opin. Biotechnol. 20(6): 651–658.

Graf, N. and J. Altenbuchner. 2011. Development of a method for markerless gene deletion in Pseudomonas putida.

Appl. Environ. Microbiol. 77(15): 5549–5552.

Graf, N. and J. Altenbuchner. 2014. Genetic engineering of Pseudomonas putida KT2440 for rapid and high-yield

production of vanillin from ferulic acid. Appl. Microbiol. Biotechnol. 98: 137–149.

Gunsalus, I. C. and G. C. Wagner. 1978. Bacterial P-450cam methylene monooxygenase components: cytochrome m,

putidaredoxin, and putidaredoxin reductase. In: J. A. Tainer (Ed.). Methods in Enzymology. Academic Press.